Image Denoising in Deep Learning: A Comprehensive Survey
DOI:
https://doi.org/10.51173/eetj.v1i1.2Keywords:
Image Denoising, Deep Learning, CNN, PSNR, SSIMAbstract
The utilization of deep learning techniques has garnered significant attention in the domain of image denoising. Each kind of deep learning methods for picture denoising possesses distinct qualities that differentiate them significantly. To be more precise, discriminative learning based on deep comprehension can effectively tackle the issue of Gaussian noise and other types of noise. This is the case because deep learning utilizes a larger and more comprehensive training set. Subsequently, a study conducted by researchers and subsequently published in the journal Science unveiled this potential. Optimization algorithms based on profound comprehension offer several advantages, such as the ability to produce precise assessments of the ambient noise. However, limited research has been conducted in this domain to categorize the many types of deep learning algorithms employed for image denoising. This is an area that needs future improvement. This post seeks to examine different advanced techniques that can be used to effectively remove noise from photos. Initially, we categories the actual noisy photographs based on the blind denoising capabilities of deep convolutional neural networks (CNNs) for both noisy hybrid images and additive white noisy photos. Subsequently, the grainy, hazy, and low-resolution images were merged to produce composite photos with significant noise. Our next step is to examine different methodologies for deep learning, with a specific focus on the underlying ideas and assumptions that drive these methodologies. Subsequently, we provide a comprehensive analysis of the most advanced approaches for reducing noise in data, utilizing publicly accessible datasets. We then proceed to compare these techniques. To summarize, we have examined many obstacles and opportunities for further investigation that may be explored in the near or far future.
References
Du, B., Wei, Q., Liu, R., 2019. An improved quantum-behaved particle swarm optimization for endmember extraction. IEEE Transactions on Geoscience and Remote Sensing, DOI: 10.1109/TGRS.2019.2903875.
Li, H., Yang, W., Yong, X., 2018. Deep learning for ground-roll noise attenuation. In: SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, pp. 1981–1985, DOI:10.1190/segam2018-2981295.1.
Wen, J., Xu, Y., Liu, H., 2018. Incomplete multiview spectral clustering with adaptive graph learning. IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2018.2884715.
Zhang, M., Zhang, F., Liu, Q., Wang, S., 2019. Vst-net: Variance-stabilizing transformation inspired network for poisson denoising. Journal of Visual Communication and Image Representation 62, 12–22, DOI: 10.1016/j.jvcir.2019.04.011.
Zha, Z., Yuan, X., Yue, T., Zhou, J., 2018. From rank estimation to rank approximation: Rank residual constraint for image denoising. arXiv preprint arXiv:1807.02504.
Xu, J., Zhang, L., Zhang, D., 2018. External prior guided internal prior learning for real-world noisy image denoising. IEEE Transactions on Image Processing 27 (6), 2996–3010. DOI: 10.1109/TIP.2018.2811546
Xu, J., Zhang, L., Zhang, D., 2018. A trilateral weighted sparse coding scheme for real-world image denoising. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 20–36. DOI: 10.1007/978-3-030-01237-3_2
Peng, Y., Zhang, L., Liu, S., Wu, X., Zhang, Y., Wang, X., 2019. Dilated residual networks with symmetric skip connection for image denoising. Neurocomputing 345, 67–76. https://doi.org/10.1016/j.neucom.2018.12.075
Hongqiang, M., Shiping, M., Yuelei, X., Mingming, Z., 2018. An adaptive image denoising method based on deep rectified denoising auto-encoder. In: Journal of Physics: Conference Series. Vol. 1060. IOP Publishing, p. 012048.DOI 10.1088/1742-6596/1060/1/012048
Davy, A., Ehret, T., Morel, J.-M., Arias, P., Facciolo, G., 2018. Non-local video denoising by cnn. arXiv preprint arXiv:1811.12758. https://doi.org/10.48550/arXiv.1811.12758
Du, H., Dong, L., Liu, M., Zhao, Y., Jia, W., Liu, X., Hui, M., Kong, L., Hao, Q., 2018. Image restoration based on deep convolutional network in wavefront coding imaging system. In: 2018 Digital Image Computing:Techniques and Applications (DICTA). IEEE, pp. 1–8. DOI: 10.1109/DICTA.2018.8615824
Ehret, T., Davy, A., Morel, J.-M., Facciolo, G., Arias, P., 2019. Model-blind video denoising via frame-to-frame training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 11369–11378.
Ren, D., Zuo, W., Zhang, D., Zhang, L., Yang, M.-H., 2019. Simultaneous fidelity and regularization learning for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2019.2926357
Sadda, P., Qarni, T., 2018. Real-time medical video denoising with deep learning: application to angiography. International journal of applied information systems 12 (13), 22. doi: 10.5120/ijais2018451755
Guan, J., Lai, R., Xiong, A., 2019. Wavelet deep neural network for stripe noise removal. IEEE Access 7, 44544–44554.DOI: 10.1109/ACCESS.2019.2908720
Majumdar, A., 2018. Blind denoising autoencoder. IEEE Transactions on Neural Networks and Learning Systems 30 (1), 312–317. DOI: 10.1109/TNNLS.2018.2838679
Sheremet, O., Sheremet, K., Sadovoi, O., Sokhina, Y., 2018. Convolutional neural networks for image denoising in info communication systems. In: 2018 International Scientific-Practical Conference Problems of Info communications. Science and Technology (PIC S&T). IEEE, pp. 429–432. DOI: 10.1109/INFOCOMMST.2018.8632109
Chen, Y., Yu, M., Jiang, G., Peng, Z., Chen, F., 2019. End-to-end single image enhancement based on a dual network cascade model. Journal of Visual Communication and Image Representation 61, 284–295. https://doi.org/10.1016/j.jvcir.2019.04.008
ZhiPing, Q., YuanQi, Z., Yi, S., XiangBo, L., 2018. A new generative adversarial network for texture preserving image denoising. In: 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, pp. 1–5. DOI: 10.1109/IPTA.2018.8608126
Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A. K., 2018. Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Processing Magazine 35 (1), 20–36. DOI: 10.1109/MSP.2017.2760358
Chiang, Y.-W., Sullivan, B., 1989. Multi-frame image restoration using a neural network. In: Proceedings of the 32nd Midwest Symposium on Circuits and Systems, IEEE, pp. 744–747. DOI: 10.1109/MWSCAS.1989.101962
Zhou, Y., Chellappa, R., Jenkins, B., 1987. A novel approach to image restoration based on a neural network. In: Proceedings of the International Conference on Neural Networks, San Diego, California.
Fukushima, K., Miyake, S., 1982. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In: Competition and Cooperation in Neural Nets. Springer, pp. 267–285. https://doi.org/10.1007/BF00344251
Chiang, Y.-W., Sullivan, B., 1989. Multi-frame image restoration using a neural network. In: Proceedings of the 32nd Midwest Symposium on Circuits and Systems,. IEEE, pp. 744–747. DOI: 10.1109/MWSCAS.1989.101962
Tamura, S., 1989. An analysis of a noise reduction neural network. In: International Conference on Acoustics, Speech, and Signal Processing,. IEEE, pp. 2001–2004. DOI: 10.1109/ICASSP.1989.266851
De Ridder, D., Duin, R. P., Verbeek, P. W., Van Vliet, L., 1999. The applicability of neural networks to nonlinear image processing. Pattern Analysis & Applications 2 (2), 111–128. https://doi.org/10.1007/s100440050022
Greenhill, D., Davies, E., 1994. Relative effectiveness of neural networks for image noise suppression. In: Machine Intelligence and Pattern Recognition. Vol. 16. Elsevier, pp. 367–378. https://doi.org/10.1016/B978-0-444-81892-8.50037-7
Bedini, L., Tonazzini, A., 1992. Image restoration preserving discontinuities: the bayesian approach and neural networks. Image and Vision Computing 10 (2), 108–118. https://doi.org/10.1016/0262-8856(92)90005-N
De Figueiredo, M. T., Leitao, J. M., 1992. Image restoration using neural networks. In: [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 2. IEEE, pp. 409–412. DOI: 10.1109/29.1641
Gardner, E.,Wallace, D., Stroud, N., 1989. Training with noise and the storage of correlated patterns in a neural network model. Journal of Physics A: Mathematical and General 22 (12), 2019. DOI 10.1088/0305-4470/22/12/007
Bedini, L., Tonazzini, A., 1990. Neural network use in maximum entropy image restoration. Image and Vision Computing 8 (2), 108–114. https://doi.org/10.1016/0262-8856(90)90025-Z
Paik, J. K., Katsaggelos, A. K., 1992. Image restoration using a modified hopfield network. IEEE Transactions on Image Processing 1 (1), 49–63. https://doi.org/10.1109/83.128030
Sivakumar, K., Desai, U. B., 1993. Image restoration using a multilayer perceptron with a multilevel sigmoidal function. IEEE Transactions on Signal Processing 41 (5), 2018–2022. https://doi.org/10.1109/78.215329
Nossek, J., Roska, T., 1993. Special issue on cellular neural networks-introduction.
Zamparelli, M., 1997. Genetically trained cellular neural networks. Neural Networks 10 (6), 1143–1151. https://doi.org/10.1016/S0893-6080(96)00128-1
Lee, C.-C., de Gyvez, J. P., 1996. Color image processing in a cellular neural-network environment. IEEE Transactions on Neural Networks 7 (5), 1086–1098. https://doi.org/10.1109/72.536306
Fukushima, K., 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36 (4), 193–202. https://link.springer.com/article/10.1007/BF00344251
Lo, S.-C., Lou, S.-L., Lin, J.-S., Freedman, M. T., Chien, M. V., Mun, S. K., 1995. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Transactions on Medical Imaging 14 (4),711–718. https://doi.org/10.1109/42.476112
Ren, W., Pan, J., Zhang, H., Cao, X., Yang, M.-H., 2020. Single image dehazing via multi-scale convolutional neural networks with holistic edges. International Journal of Computer Vision 128(1),240–259. https://link.springer.com/article/10.1007/s11263-019-01235-8
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al., 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (11), 2278–2324. https://doi.org/10.1109/5.726791
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems. pp. 1097–1105. https://doi.org/10.1145/3065386
Marreiros, A. C., Daunizeau, J., Kiebel, S. J., Friston, K. J., 2008. Population dynamics: variance and the sigmoid activation function. Neuroimage 42 (1), 147–157. https://doi.org/10.1016/j.neuroimage.2008.04.239
Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., 2009. What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, pp. 2146–2153. https://doi.org/10.1109/ICCV.2009.5459469
Tian, C., Xu, Y., Fei, L., Wang, J., Wen, J., Luo, N., 2019. Enhanced cnn for image denoising. CAAI Transactions on Intelligence Technology 4 (1), 17–23. https://doi.org/10.1049/trit.2018.1054
Wu, S., Xu, Y., 2019. Dsn: A new deformable subnetwork for object detection. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2019.2905373
Wang, H., Wang, Q., Gao, M., Li, P., Zuo, W., 2018. Multi-scale location-aware kernel representation for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.1248–1257.
Liu, Q., Lu, X., He, Z., Zhang, C., Chen,W.-S., 2017. Deep convolutional neural networks for thermal infrared object tracking. Knowledge-Based Systems 134, 189–198. https://doi.org/10.1016/j.knosys.2017.07.032
Yuan, D., Li, X., He, Z., Liu, Q., Lu, S., 2020. Visual object tracking with adaptive structural convolutional network. Knowledge-Based Systems, 105554. https://doi.org/10.1016/j.knosys.2020.105554
Duan, C., Cui, L., Chen, X., Wei, F., Zhu, C., Zhao, T., 2018. Attention-fused deep matching network for natural language inference. In: IJCAI. pp. 4033–4040.
Zhang, Z., Geiger, J., Pohjalainen, J., Mousa, A. E.-D., Jin, W., Schuller, B., 2018. Deep learning for environmentally robust speech recognition: An overview of recent developments. ACM Transactions on Intelligent Systems and Technology (TIST) 9 (5), 49. https://doi.org/10.1145/3178115
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556. https://doi.org/10.48550/arXiv.1409.1556
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9.
Liang, J., Liu, R., 2015. Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network. In: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE, pp. 697–701. https://doi.org/10.1109/CISP.2015.7407967
Xu, Q., Zhang, C., Zhang, L., 2015. Denoising convolutional neural network. In: 2015 IEEE International Conference on Information and Automation. IEEE, pp. 1184–1187. https://doi.org/10.1007/s40747-021-00428-4
Tian, C., Xu, Y., Zuo, W., Zhang, B., Fei, L., Lin, C.-W., 2020. Coarse-to-fine cnn for image super-resolution. IEEE Transactions on Multimedia. https://doi.org/10.1109/TMM.2020.2999182
Ren, D., Shang, W., Zhu, P., Hu, Q., Meng, D., Zuo, W., 2020. Single image deraining using bilateral recurrent network. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2020.2994443
Mao, X., Shen, C., Yang, Y.-B., 2016. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems. pp. 2802– 2810.
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L., 2017. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing 26 (7), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206
Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. http://proceedings.mlr.press/v37/ioffe15.pdf
Nair, V., Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10). pp. 807–814.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Lefkimmiatis, S., 2017. Non-local color image denoising with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3587–3596.
Zhang, K., Zuo,W., Zhang, L., 2018. Ffdnet: Toward a fast and flexible solution for cnn-based image denoising. IEEE Transactions on Image Processing 27 (9), 4608–4622.
Chen, J., Chen, J., Chao, H., Yang, M., 2018. Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.3155–3164.
Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L., 2019. Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1712– 1722.
Zhang, K., Zuo, W., Zhang, L., 2019. Deep plug-and-play super-resolution for arbitrary blur kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1671–1681.
Tian, C., Xu, Y., Fei, L., Yan, K., 2018. Deep learning for image denoising: a survey. In: International Conference on Genetic and Evolutionary Computing. Springer, pp. 563–572.
Tian, C., Xu, Y., Fei, L., Yan, K., 2018. Deep learning for image denoising: a survey. In: International Conference on Genetic and Evolutionary Computing. Springer, pp. 563–572.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der Laak, J. A., Van Ginneken, B., S´anchez, C. I., 2017. A survey on deep learning in medical image analysis. Medical Image Analysis 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
Xiao, X., Xiong, N. N., Lai, J., Wang, C.-D., Sun, Z., Yan, J., 2019. A local consensus index scheme for random-valued impulse noise detection systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2019.2925886
Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L., 2018. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 701–710.
Lee, D., Yun, S., Choi, S., Yoo, H., Yang, M.-H., Oh, S., 2018. Unsupervised holistic image generation from key local patches. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 19–35.
Choi, K., Vania, M., Kim, S., 2019. Semi-supervised learning for low-dose ct image restoration with hierarchical deep generative adversarial network (hd-gan). In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 2683–2686. https://doi.org/10.1109/EMBC.2019.8857572
Meng, M., Li, S., Yao, L., Li, D., Zhu, M., Gao, Q., Xie, Q., Zhao, Q., Bian, Z., Huang, J., et al., 2020. Semi supervised learned sinogram restoration network for low-dose ct image reconstruction. In: Medical Imaging 2020: Physics of Medical Imaging. Vol. 11312. International Society for Optics and Photonics, p. 113120B. https://doi.org/10.1117/12.2548985
Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural Networks 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Burger, H. C., Schuler, C. J., Harmeling, S., 2012. Image denoising: Can plain neural networks compete with bm3d? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 2392–2399. https://doi.org/10.1109/CVPR.2012.6247952
Hirose, Y., Yamashita, K., Hijiya, S., 1991. Back-propagation algorithm which varies the number of hidden units. Neural Networks 4 (1), 61–66. https://doi.org/10.1016/0893-6080(91)90032-Z
Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the dimensionality of data with neural networks. Science 313 (5786), 504–507. https://doi.org/10.1126/science.1127647
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., 2007. Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems. pp. 153–160.
Hinton, G., Osindero, S., ???? The, y. 2006. a fast learning algorithm for deep belief nets. Neural Computation18 (7). https://doi.org/10.1162/neco.2006.18.7.1527
Yao, Y., Wu, X., Zhang, L., Shan, S., Zuo, W., 2018. Joint representation and truncated inference learning for correlation filter based tracking. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 552–567.
Zhang, J., Ghanem, B., 2018. Ista-net: Interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1828–1837.
Lu, Z., Yu, Z., Ya-Li, P., Shi-Gang, L., Xiaojun, W., Gang, L., Yuan, R., 2018. Fast single image superresolution via dilated residual networks. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2865613
Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S. Z., Hospedales, T., 2015. When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. In: Proceedings of the IEEE international Conference on Computer Vision Workshops. pp. 142–150.
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., Chen, M., 2014. Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 844–848. https://doi.org/10.1109/ICARCV.2014.7064414
Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434
Tao, L., Zhu, C., Xiang, G., Li, Y., Jia, H., Xie, X., 2017. Llcnn: A convolutional neural network for low-light image enhancement. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, pp. 1–4. https://doi.org/10.1109/VCIP.2017.8305143
Chen, J., Chen, J., Chao, H., Yang, M., 2018. Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3155–3164.
Han, Y., Ye, J. C., 2018. Framing u-net via deep convolutional framelets: Application to sparse-view ct. IEEE Transactions on Medical Imaging 37 (6), 1418–1429. https://doi.org/10.1109/TMI.2018.2823768
Chen, J., Hou, J., Chau, L.-P., 2018. Light field denoising via anisotropic parallax analysis in a cnn framework. IEEE Signal Processing Letters 25 (9), 1403–1407. https://doi.org/10.1109/LSP.2018.2861212
Godard, C., Matzen, K., Uyttendaele, M., 2018. Deep burst denoising. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 538–554.
Khoroushadi, M., Sadegh, M., 2018. Enhancement in low-dose computed tomography through image denoising techniques: Wavelets and deep learning. Ph.D. thesis, ProQuest Dissertations Publishing
Wu, D., Ren, H., Li, Q., 2020. Self-supervised dynamic ct perfusion image denoising with deep neural networks. arXiv preprint arXiv:2005.09766. https://doi.org/10.1109/TRPMS.2020.2996566
Jian, W., Zhao, H., Bai, Z., Fan, X., 2018. Low-light remote sensing images enhancement algorithm based on fully convolutional neural network. In: China High Resolution Earth Observation Conference. Springer, pp.56–65. https://link.springer.com/chapter/10.1007/978-981-13-6553-9_7
Zhao, D., Ma, L., Li, S., Yu, D., 2019. End-to-end denoising of dark burst images using recurrent fully convolutional networks. arXiv preprint arXiv:1904.07483. https://doi.org/10.48550/arXiv.1904.07483
Anwar, S., Barnes, N., 2019. Real image denoising with feature attention. arXiv preprint arXiv:1904.07396
Wang, X., Dai, F., Ma, Y., Guo, J., Zhao, Q., Zhang, Y., 2019. Near-infrared image guided neural networks for color image denoising. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 3807–3811. https://doi.org/10.1109/ICASSP.2019.8682692
Green, M., Marom, E. M., Konen, E., Kiryati, N., Mayer, A., 2018. Learning real noise for ultra-low dose lung ct denoising. In: International Workshop on Patch-based Techniques in Medical Imaging. Springer, pp. 3–11. https://link.springer.com/ chapter/10.1007/978-3-030-00500-9_1
Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J. T., 2019. Unprocessing images for learned raw denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 11036–1104.
Tian, C., Xu, Y., Zuo, W., 2020. Image denoising using deep cnn with batch renormalization. Neural Networks 121, 461–473. https://doi.org/10.1016/j.neunet.2019.08.022
Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L., Liu, H., 2020. Attention-guided cnn for image denoising. Neural Networks. https://doi.org/10.1016/j.neunet.2019.12.024
Tian, C., Xu, Y., Zuo, W., Du, B., Lin, C.-W., Zhang, D., 2020. Designing and training of a dual cnn for image denoising. https://doi.org/10.1016/j.knosys.2021.106949.
Cui, J., Gong, K., Guo, N., Wu, C., Meng, X., Kim, K., Zheng, K., Wu, Z., Fu, L., Xu, B., et al., 2019. Pet image denoising using unsupervised deep learning. European journal of nuclear medicine and molecular imaging 46 (13), 2780–2789. https://link.springer.com/article/10.1007/s00259-019-04468-4
Yan, H., Tan, V., Yang, W., Feng, J., 2019. Unsupervised image noise modeling with self-consistent gan. arXiv preprint arXiv:1906.05762..
Broaddus, C., Krull, A., Weigert, M., Schmidt, U., Myers, G., 2020. Removing structured noise with self-supervised blind-spot networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 159–163 https://doi.org/10.1109/ISBI45749.2020.9098336
Li, M., Hsu, W., Xie, X., Cong, J., Gao, W., 2020. Sacnn: Self-attention convolutional neural network for low-dose ct denoising with self-supervised perceptual loss network. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2020.2968472
Hendriksen, A. A., Pelt, D. M., Batenburg, K. J., 2020. Noise2inverse: Self-supervised deep convolutional denoising for linear inverse problems in imaging. arXiv preprint arXiv:2001.11801
Zhang, K., Zuo,W., Zhang, L., 2018. Ffdnet: Toward a fast and flexible solution for cnn-based image denoising. IEEE Transactions on Image Processing 27 (9), 4608-4622. https://doi.org/10.1109/TIP.2018.2839891
Isogawa, K., Ida, T., Shiodera, T., Takeguchi, T., 2017. Deep shrinkage convolutional neural network for adaptive noise reduction. IEEE Signal Processing Letters 25 (2), 224–228. https://doi.org/10.1109/TMI.2020.2968472
Soltanayev, S., Chun, S. Y., 2018. Training deep learning based denoisers without ground truth data. In: Advances in Neural Information Processing Systems. pp. 3257–3267
Yang, J., Liu, X., Song, X., Li, K., 2017. Estimation of signal-dependent noise level function using multicolumn convolutional neural network. In: 2017 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 2418–2422. https://doi.org/10.1109/ICIP.2017.8296716
Jiang, L., Jing, Y., Hu, S., Ge, B., Xiao, W., 2018. Deep refinement network for natural low-light image enhancement in symmetric pathways. Symmetry 10 (10), 491. https://doi.org/10.3390/sym10100491
Yang, J., Liu, X., Song, X., Li, K., 2017. Estimation of signal-dependent noise level function using multicolumn convolutional neural network. In: 2017 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 2418–2422. https://doi.org/10.1109/ICIP.2017.8296716.
Zhang, F., Liu, D., Wang, X., Chen, W., Wang, W., 2018. Random noise attenuation method for seismic data based on deep residual networks. In: International Geophysical Conference, Beijing, China, 24-27 April 2018. Society of Exploration Geophysicists and Chinese Petroleum Society, pp. 1774–1777. https://doi.org/10.1190/IGC2018-435
Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., Yang, R., 2018. Learning warped guidance for blind face restoration. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 272–289.
Zhang, K., Zuo, W., Zhang, L., 2018. Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3262–3271.
Kokkinos, F., Lefkimmiatis, S., 2019. Iterative joint image demosaicking and denoising using a residual denoising network. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2019.2905991
Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., Yang, R., 2018. Learning warped guidance for blind face restoration. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 272–289..
Zhang, K., Zuo, W., Zhang, L., 2018. Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3262–3271..
Kokkinos, F., Lefkimmiatis, S., 2019. Iterative joint image demosaicking and denoising using a residual denoising network. IEEE Transactions on Image Processing.. https://doi.org/10.1109/TIP.2019.2905991
Jie, H., Zhibo, Z., Chao, R., Qizhi, T., X, He., 2022. A prior-guided deep network for real image denoising and its applications. ELSEVIER Knowledge-Based Systems. Volume 255. https://doi.org/10.1016/j.knosys.2022.109776
Qiyuan, T., Ziyu, L., Qiuyun, F., Jonathan, R, P., Berkin, B., David H. S., Susie Y. H.,2022. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI. ELSEVIER NeuroImage. Volume 253. https://doi.org/10.1016/j.neuroimage.2022.119033
Qiqiong, Y., Guo, C., Hao, S., Youqiang Z., Peng F., 2023. EPLL image denoising with multi-feature dictionaries. ELSEVIER Digital Signal Processing. Volume 137. https://doi.org/10.1016/j.dsp.2023.104019
Shaoping X., Xiaohui C., Jie L., Nan X., Minghai X., Changfei Z., 2023. Dual-branch deep image prior for image denoising. Journal of Visual Communication and Image Representation. Volume 93. 103821. https://doi.org/10.1016/j.jvcir.2023.103821
Jiechao S., Guoqiang L., Zi W., Qibin F., 2022. SRNet: Sparse representation-based network for image denoising. ELSEVIER Digital Signal Processing. Volume 130. 103702. https://doi.org/10.1016/j.dsp.2022.103702
Zihao, C., Alex, Noel, Joseph, R., Vijayarajan, R., Wei, L., Vijayalakshmi, G,V, M., 2023. Twofold dynamic attention guided deep network and noise-aware mechanism for image denoising Zhemin Zhuang. Journal of King Saud University – Computer and Information Sciences. Volume 35. Issue 3. Pages 87–102. https://doi.org/10.1016/j.jksuci.2023.02.003
Pengfei, Y., Heng, W., Lianglun, Cheng., Shaojuan, Luo., 2023. ELSEVIER Infrared image denoising via adversarial learning with multi-level feature attention network, Physics and Technology Volume 128. 104527
Zhanxiong, W., Xuanheng, Chen., Sangma, Xie., Jian S., Yu Z., 2023. Super-resolution of brain MRI images based on denoising diffusion probabilistic model. ELSEVIER Biomedical Signal Processing and Control. Volume 85. 1. https://doi.org/10.1016/j.bspc.2023.104901